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 Abstract: For such a multi-valued nonlinear magnetic response, the domains with different 

values of the magnetic permeability ”excited” by the spatial soliton can be viewed as effective induced 

left-handed waveguides which make possible the existence of single- and multi-hump soliton 

structures. Due to the existence of such domains, the solitons can be not only symmetric, but also 

antisymmetric and even asymmetric. Formally, the size of an effective domain can be much smaller 

than the wavelength and, therefore, there exists an applicability limit for the obtained results to 

describe nonlinear waves in realistic composite structures. 
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Introduction 

 First, we follow the original paper [1] and consider a two-dimensional composite structure 

consisting of a square lattice of the periodic arrays of conducting wires and split-ring resonators 

(SRR). We assume that the unit-cell size d of the structure is much smaller then the wavelength of the 

propagating electromagnetic field and, for simplicity, we choose the single-ring geometry of a lattice 

of cylindrical SRRs. The results obtained for this case are qualitatively similar to those obtained in 

the more involved cases of double SRRs. This type of microstructured materials has recently been 

suggested and built in order to create left-handed metamaterials with negative refraction in the 

microwave region [2].  

 The negative real part of the effective dielectric permittivity of such a composite structure 

appears due to the metallic wires whereas a negative sign of the magnetic permeability becomes 

possible due to the SRR lattice. As a result, these materials demonstrate the properties of negative 
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refraction in the finite frequency band, ω0 < ω < min(ωp, ω||m), where ω0 is the eigenfrequency of the 

SRRs, ω||m is the frequency of the longitudinal magnetic plasmon, ωp is an effective plasma frequency, 

and ω is the angular frequency of the propagating electromagnetic wave, (E , H) ∼ (E, H) exp (iωt). 

The split-ring resonator can be described as an effective LC oscillator (see, e.g. Ref. [7]) with the 

capacitance of the SRR gap, as well as an effective inductance and resistance. Similar to other 

nonlinear media, nonlinear lefthanded composite materials can support self-trapped electromagnetic 

waves in the form of spatial solitons. Such solitons possess interesting properties because they exist 

in materials with a hysteresis-type (multi-stable) nonlinear magnetic response. Below, we describe 

novel and unique types of single and multi-hump (symmetric, antisymmetric, or even asymmetric) 

backward-wave spatial electromagnetic solitons supported by the nonlinear magnetic permeability. 

 Nonlinear response of such a composite structure can be characterized by two different 

contributions. The first one is an intensity-dependent part of the effective dielectric permittivity of the 

infilling dielectric. For simplicity, we may assume that the metallic structure is embedded into a 

nonlinear dielectric with a permittivity that depends on the intensity of the electric field in a general 

form, 𝜖D = 𝜖D (|E|2 ). For results of calculations presented below, we take the linear dependence that 

corresponds to the Kerr-type nonlinear response [9].  

Electromagnetic spatial solitons in waves resonant response 

     The second contribution into the nonlinear properties of the composite material comes from the 

lattice of resonators, since the SRR capacitance (and, therefore, the SRR eigenfrequency) depends on 

the strength of the local electric field in a narrow slot. The intensity of the local electric field in the 

SRR gap depends on the electromotive force in the resonator loop, which is induced by the magnetic 

field. Therefore, the effective magnetic permeability µeff depends on the macroscopic (average) 

magnetic field H, and this dependence can be found in the form [8] 
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is the eigenfrequency of oscillations in the presence of the external field of a finite amplitude, h is the 

width of the ring, Γ = 𝑐2/2𝜋𝜎𝑎ℎ, for h < δ, and Γ = 𝑐2/2𝜋𝜎𝑎𝛿, for h > δ. It is important to note 

that Eq. (1) has a simple physical interpretation: The resonant frequency of the artificial magnetic 

structure depends on the amplitude of the external magnetic field and, in turn, this leads to the 

intensity-dependent function µeff . 

 Due to the high values of the electric field in the slot of SRR as well as resonant interaction of 

the electromagnetic field with the SRR lattice, the characteristic magnetic nonlinearity in such 

structures is much stronger then the corresponding electric nonlinearity. Therefore, magnetic 

nonlinearity should dominate in the composite metamaterials. More importantly, the nonlinear 

medium can be created by inserting nonlinear elements into the slots of SRRs, allowing an easy tuning 

by an external field. 



 

The critical fields for switching between LH and RH states, shown in the Figs. 1 can be reduced 

to a desirable value by choosing the frequency close to the resonant frequency of SRRs. Even for a 

relatively large difference between the SRR eigenfrequency and the external frequency, as we have 

in Fig. 1(b) where Ω = 0.8 (i.e. ω = 0.8ω0), the switching amplitude of the magnetic field is ∼ 0.03Ec. 

The characteristic values of the focusing nonlinearity can be estimated for some materials such as n-

InSb for which Ec = 200V/cm [3]. As a result, the strength of the critical magnetic field is found as Hc1 

≈ 1.6A/m. Strong defocusing properties for microwave frequencies are found in BaxSr1−xTiO3 (see Ref. 

[14] and references therein). The critical nonlinear field of a thin film of this material is Ec = 4 · 

104V/cm, and the corresponding field of the transition from the LH to RH state [see Fig. 1 (c)] can be 

found as Hc ≈ 55.4A/m. 

 

 

 
Figure 1: Real part of the effective magnetic permeability vs. intensity of the magnetic field: (a) Ω > 

1, α = 1; (b) Ω < 1, α = 1, (c) Ω > 1, α = −1; and (d) Ω < 1, α = −1. Black – the lossless case (γ = 0), 

grey–the lossy case (γ = 0.05). Dashed curves show unstable branches. 

The unique possibility of strongly enhanced effective nonlinearities in the left-handed 

metamaterials revealed here may lead to an essential revision of the concepts based on the linear 

theory, since the electromagnetic waves propagating in such materials always have a finite amplitude. 

At the same time, the engineering of nonlinear composite materials may open a number of their novel 

applications such as frequency multipliers, beam spatial spectrum transformers, switchers, limiters, 

etc. 

 Spatially localized TM-polarized waves that are described by one component of the magnetic 

field and two components of the electric field. Monochromatic stationary waves with the magnetic 

field component H = Hy propagating along the z-axis and homogeneous in the y-direction, [∼ exp(iωt 

− ikz)], are described by the dimensionless nonlinear Helmholtz equation where γ = kc/ω is a 

wavenumber, x = x′ω/c is the dimensionless coordinate, and x′ is the dimensional coordinate. Different 

types of localized solutions of Eq. (1) can be analyzed on the phase plane (H,dH/dx) (see, e.g., Refs. 



 

[7]). First, we find the equilibrium points: the point (0,0) existing for all parameters, and the point 

(0,H1), where H1 is found as a solution of the equation. 

Below the threshold, i.e. for γ < γtr, where γtr=𝜖[1 + FΩ2/(1 − Ω2)], the only 

Figures 1 and 2 summarize different types of nonlinear magnetic properties of the composite, 

which are defined by the dimensionless frequency of the external field Ω = ω/ω0, for both a focusing 

[Figs. 1, 2(a,b)] and a defocusing [Figs. 1, 2(c,d)] nonlinearity of the dielectric. 

 
Figure 2: Imaginary part of the effective magnetic permeability vs. intensity of the magnetic field 

for γ = 0.05: (a) Ω > 1, α = 1; (b) Ω < 1, α = 1, (c) Ω > 1, α = −1; and (d) Ω < 1, α = −1. Dashed 

curves show unstable branches. 

The unique possibility of strongly enhanced effective nonlinearities in the left-handed 

metamaterials revealed here may lead to an essential revision of the concepts based on the linear 

theory, since the electromagnetic waves propagating in such materials always have a finite amplitude. 

At the same time, the engineering of nonlinear composite materials may open a number of their novel 

applications such as frequency multipliers, beam spatial spectrum transformers, switchers, limiters, 

etc.    equilibrium state (0,0) is a saddle point and, therefore, no finite-amplitude or localized waves 

can exist. Above the threshold value, i.e. for γ > γtr, the phase plane has three equilibrium points, and 

a separatrix curve corresponds to a soliton solution. 

 In the vicinity of the equilibrium state (0,0), linear solutions of Eq. (1) describe either 

exponentially growing or exponentially decaying modes. The equilibrium state (0,H1) describes a 

finite-amplitude wave mode of the transverse electromagnetic field. In the region of multi-stability, 

the type of the phase trajectories is defined by the corresponding branch of the multi-valued magnetic 

permeability. Correspondingly, different types of the spatial solitons appear when the phase 

trajectories correspond to the different branches of the nonlinear magnetic permeability. 

     The fundamental soliton is described by the separatrix trajectory on the plane (H,dH/dx) that 

starts at the point (0,0), goes around the center point (0,H1), and then returns back; the corresponding 

soliton profile is shown in Fig. 1(a). More complex solitons are formed when the magnetic 

permeability becomes multi-valued and is described by several branches. Then, soliton solutions are 

obtained by switching between the separatrix trajectories corresponding to different (upper and lower) 

branches of magnetic permeability. Continuity of the tangential components of the electric and 



 

magnetic fields at the boundaries of the domains with different values of magnetic permeability 

implies that both H and dH/dx should be continuous. As a result, the transitions between different 

phase trajectories should be continuous. 

 Figures 1(b,c) show several examples of the more complex solitons corresponding to a single 

jump to the lower branch of µ(H) (dotted) and to the upper branch of µ(H) (dashed), respectively. The 

insets show the magnified domains of a steep change of the magnetic field. Both the magnetic field 

and its derivative, proportional to the tangential component of the electric field, are continuous. The 

shaded areas show the effective domains where the value of magnetic permeability changes. Figure 

1(d) shows an example of more complicated multi-hump soliton which includes two domains of the 

effective magnetic permeability, one described by the lower branch, and the other one – by the upper 

branch. In a similar way, we can find more complicated solitons with different number of domains of 

the effective magnetic permeability. 

      We note that some of the phase trajectories have discontinuity of the derivative at H = 0 caused 

by infinite values of the magnetic permeability at the corresponding branch of µeff(H). Such a non-

physical effect is an artifact of the lossless model of a left-handed nonlinear composite considered 

here for the analysis of the soliton solutions. In more realistic models that include losses, the region 

of multi-stability does not extend to the point H = 0, and in this limit the magnetic permeability 

remains a single-valued function of the magnetic field [1]. 

Conclusion 

 For such a multi-valued nonlinear magnetic response, the domains with different values of the 

magnetic permeability ”excited” by the spatial soliton can be viewed as effective induced left-handed 

waveguides which make possible the existence of single- and multi-hump soliton structures. Due to 

the existence of such domains, the solitons can be not only symmetric, but also antisymmetric and 

even asymmetric. Formally, the size of an effective domain can be much smaller than the wavelength 

and, therefore, there exists an applicability limit for the obtained results to describe nonlinear waves 

in realistic composite structures. 

 When the infilling dielectric of the structure displays self-focusing nonlinear response, we 

have Ω < 1, and in such system we can find dark solitons, i.e. localized dips on the finite-amplitude 

background wave [8]. Similar to bright solitons, there exist both fundamental dark solitons and dark 

solitons with domains of different values of magnetic permeability. For self-defocusing nonlinearity 

and Ω < 1, magnetic permeability is a single-valued function, and such a nonlinear response can 

support dark solitons as well, whereas for self-focusing dielectric, we have Ω > 1 and no dark solitons 

can exist. 
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