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Abstract. In many buildings, especially high rise ones, wind have been major problem by 

causing vibration as well as fatigue issues resulted from fluctuations of wind in random flowing. Wind 

flow randomness have been studied in many scientific researches and is convinced to follow some 

probabilistic models which helps researchers to predict the behavior in some way. If probabilistic 

models are fed with enough meteorological data obtained from weather observations, then reliable 

predictions or simulations would be possible to make. 
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1. INTRODUCTION 

The main task of the thesis work is to analyze the directionality effects of wind climate and 

generate and apply some consistent models representing them.  

The experienced load cycles inflicting fatigue damage to the façade of the buildings are 

influenced by local wind climate. The corresponding model for wind climate is also sub divided into 

two sub models according to intensity of the wind speed. The first model is model for storms and this 

applies the cases when speed of wind is above 14 m/s. The second model is a model for basic 

population and this applies for wind speeds below this threshold value of 14 m/s.  

Analyzing of load cycles induced by wind in non-storm hours requires a probabilistic model 

for a basic population of wind speeds. Many statisticians apply Weibull distribution to model lower 

range of wind speeds because of its versatility and only two parameters have to be known to represent 

the distribution. Thus based on meteorological observations at Dusseldorf, shape and scale parameters 
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of Weibull distribution have to be obtained for each year of observations starting from 1952 till 2017 

and for each direction with 10o stepsize, overall 36 directions. However, problem arises with the data 

from 1952 till 1975, since only 16 directions were used to observe wind speed of wind climate. These 

data should also be tackled carefully using trigonometric interpolation with Fourier series to obtain 

the Weibull parameters for 36 directions. Another random variable to be defined and modelled is 

frequency of sectors, calms and erroneous measurements for each calendar year. The first one can be 

modelled using Beta distribution not forgetting the limitation that the sum of frequencies of sectors 

and calms as well as erroneous measurements should always yield unity.  

2. RESEARCH METHODS AND AVAILABLE DATA 

2.1. Meteorological observations and data handling 

Observation data is divided into two periods in which different methods was used to write the 

data. The first period encompasses years from 1952 till 1974. In this period of time the space is divided 

into 16 directions at which the wind speed is measured. Each direction encompasses quite larger gap 

of 22.5o. The directions are written in numbers referring its angle and can be found using the following 

formula: 

𝑑𝑖𝑟 = 𝑖𝑑𝑖𝑟 ∙
360𝑜

32
                                                                      (1) 

 dir – angle at which wind is directed, idir – the data referring to the direction.  

The values of idir are only even numbers from 2 till 32, overall 16 sectors, that’s why 360o is 

divided by 32 and not 16.  

The second period is from 1975 till 2017. In this period of time the observation format changed 

and the number of wind direction sectors are refined from 16 to 36 making each sector 10o. And the 

directions can be calculated as follows: 

𝑑𝑖𝑟 = 𝑖𝑑𝑖𝑟 ∙ 10𝑜                                                                           (2) 

Range of idir is from 1 till 36. The data after 1975 is favorable since in this format or in 36 

directions all variables should be brought in, i.e. the data before this year is interpolated using Fourier 

series from 16 sector values to 36 sector values. The next chapter will discuss this issue broadly. 

Furthermore, the meteorological observations encompass some erroneous measurements also. 

Their directions are marked with -9 or 99 and thus the wind speed data should be ignored when while 

reading the observations. However, they are not completely useless. In developing probabilistic model 

for frequency of sectors, the erroneous measurements are also taken into account as an observation 

and their counts are summed to total number of observations in a year. Since the total sum of all 

frequency of sectors and frequencies of erroneous measurements and calms should yield unity.  

2.2. Probabilistic model for non-storm hours. 



In modelling the wind speed, the probability distributions are really useful tool. It has been 

stated that the wind speed levels beyond 14 m/s are assumed to follow Weibull distribution. According 

to theory this distribution function fits a wide collection of recorded wind data. And the precision of 

the Weibull distribution is proven to be adequate. And only two parameters identify the Weibull 

distribution. The shape and scale parameters need to be found using the formulas explained in 2.1.4. 

subchapter. In the algorithm below, it has been explained how to find k and v0 taking into account 

their directions. 

Algorithm 8. Calculating shape and scale parameter of Weibull distribution for each direction 

of wind using the meteorological observation data of wind speed. 

Step 1. Calculate mean and standard deviation for each direction for each year.  

𝑚𝑒𝑎𝑛(𝑑𝑖𝑟) =
∑ 𝑥𝑖

𝑁
{𝑖=1}  

𝑁(𝑖𝑑𝑖𝑟)
 

 

𝜎(𝑑𝑖𝑟) = √
∑ (𝑥𝑖 − 𝑚𝑒𝑎𝑛(𝑑𝑖𝑟)𝑁

{𝑖=1}

𝑁(𝑖𝑑𝑖𝑟)
  

Here N is the total number of counts of observation in particular direction excluding erroneous 

measurements and the cases where speed is equal to zero. As stated above idir=2,32 before 75 

th year and idir=1,36 after that.  

 

Step 2. Calculate covariance: 
𝑚(𝑖𝑑𝑖𝑟)

𝜎(𝑖𝑑𝑖𝑟)
= 𝑐𝑜𝑣(𝑖𝑑𝑖𝑟) 

 

Step 3. Calculate the value of k using following formula:  

1

𝑘(𝑑𝑖𝑟)
= 𝑐𝑜𝑣(𝑖𝑑𝑖𝑟) ∙ (1 + (1 − 𝑐𝑜𝑣(𝑖𝑑𝑖𝑟))2 ∙ ∑ 𝑐𝑖 ∙ 𝑐𝑜𝑣(𝑖𝑑𝑖𝑟)𝑖

𝑛

𝑖=0

 

 

Step 4. Shape parameter has been found, via this parameter gamma function can be calculated: 

Γ (1 +
1

𝑘(𝑖𝑑𝑖𝑟)
) 

 

Step 4. Using following equation below, it will be possible to find the value of scale 

parameter. In this formula ε=0: 

𝑣0(𝑖𝑑𝑖𝑟) =
𝑚𝑒𝑎𝑛(𝑖𝑑𝑖𝑟)

Γ (1 +
1

𝑘(𝑖𝑑𝑖𝑟)
)
 

 

2.3. Re-distribution for refined sector width by Fourier series 

We were able to create all the means and standard deviations for all directions after 75 th year. 

And taking steps in Algorithm 6, scale and shape parameters have been found. However, the directions 

before 75 th year differ from counterparts with being only 16 directions with 22.5o gap interval each. 



In order to find the k and v0 for the whole refined period it is required to transform the 16 direction 

spanning 0o- 360o to 36 directions with 10o interval. In other words, we need to find the intermediate 

values of function which goes through those 16 points with equally spaced 22.5o. Those intermediate 

points are, to be more precise, at 10o, 20o, … 360o.  

To accomplish this task, we can use trigonometric interpolation or, another name, Fourier 

series interpolation. In mathematics it is an interpolation with trigonometric polynomials and used in 

finding a function that goes through some given data point that are equally spaced. This function 

should be trigonometric polynomial, that is it is the sum of sines and cosines of the given period. Thus 

it is better suited for interpolation of periodic functions. A trigonometric polynomial of order N has 

form: 

𝑝(𝑥) = 𝑎0 + ∑ 𝑎𝑘 ∙ cos (𝑘𝑥)𝑁
{𝑘=1} + ∑ 𝑏𝑘 ∙ sin (𝑘𝑥)𝑁

{𝑘=1}                                                      (3) 

The expression contains 2N+1 coefficients overall: 𝑎0, 𝑎1, … 𝑎𝑁, 𝑏1, … 𝑏𝑁 

The period is T and as indicated all xi are equally spaced with period being divided into N 

parts: 

𝑥𝑘 =
𝑘∙𝑇

𝑁
                                                                                                                                                                                                            (4) 

And xk  has following property: 

𝑥0 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑁  

𝑝(𝑥𝑛) = 𝑦𝑛,    𝑛 = 1, 2 … , 𝑁                                                                                                          (5) 

𝑝(𝑥0) = 𝑦𝑁                                                                                                                                     (6) 

And interpolating coefficients could be found as follows: 

𝑎0 =
2

𝑁
∙ ∑ 𝑦𝑘

𝑁−1
𝑘=0                                                                                                          (7) 

𝑎𝑚 =
2

𝑁
∙ ∑ 𝑦𝑘 cos (

2𝑘𝑚𝜋

𝑁
)                 𝑚 = 1, 2, … , 𝑁/2𝑁−1

𝑘=0                                                               (8) 

𝑏𝑚 =
2

𝑁
∙ ∑ 𝑦𝑘 sin (

2𝑘𝑚𝜋

𝑁
)                 𝑚 = 1, 2, … , 𝑁/2𝑁−1

𝑘=0                                                                (9) 

To have a better approximation this form of interpolation can be used. It is notable that the 

last element of summation is given with coefficient divided by 2: 

𝑠(𝑥) =
𝑎0

2
+ 𝑎1 cos (

2𝜋𝑥

𝑇
) + 𝑎2 cos (2

2𝜋𝑥

𝑇
) + ⋯ +

𝑎𝑁
2

2
cos (

𝑁

2
·

2𝜋𝑥

𝑇
)+ 

+𝑏1 sin (
2𝜋𝑥

𝑇
) + 𝑏2 sin (2

2𝜋𝑥

𝑇
) + ⋯ + 𝑏𝑛−1 sin ((

𝑁

2
− 1) ∙

2𝜋𝑥

𝑇
) +

𝑏𝑛

2
sin (

𝑁

2
·

2𝜋𝑥

𝑇
)                       (10) 



We were able to formulate the Fourier series and now using this theory we can find the 

intermediate points’ data before 1975. Below provided the algorithm to find those points given 16 

directions data of mean and sdev. 

Algorithm 9. Interpolation of means before 1975 to find the intermediate data with 10o 

interval. T=360o , N=16  

Step 1. Define the 16 mean values to yk  

𝑦𝑘 = 𝑚𝑒𝑎𝑛𝑖𝑑𝑖𝑟 ,   𝑘 = 2,17, 𝑖𝑑𝑖𝑟 = 1,16 

𝑦0 = 𝑚𝑒𝑎𝑛17 
 

Step 2. Define xk given T=360o , overall 36 values to be calculated.  

𝑥𝑘 = 𝑖𝑑𝑖𝑟 ∙
𝑇

36
= 𝑖𝑑𝑖𝑟 ∙ 10 

 

Step 3. Calculate  𝑎0 using eq. (7) 

𝑎0 =
1

8
∙ ∑ 𝑦𝑘

15

𝑘=0

 

 

Step 4. Calculate am,  bm using equations (8) and (9), overall 16 coefficients need to be 

calculated: 

𝑎𝑚 =
1

8
∙ ∑ 𝑦𝑘 cos (

𝑘𝑚𝜋

8
)                 𝑚 = 1, 2, … ,8

15

𝑘=0

 

𝑏𝑚 =
1

8
∙ ∑ 𝑦𝑘 sin (

𝑘𝑚𝜋

8
)                 𝑚 = 1, 2, … ,8

15

𝑘=0

 

Step 5. After all coefficients have been found, it possible to determine values of s(xn). Use 

formula (10) to find interpolated value at each xn: 

𝑠(𝑥𝑘) =
𝑎0

2
+ 𝑎1 cos (

2𝜋𝑥𝑘

360
) + 𝑎2 cos (2

2𝜋𝑥𝑘

360
) + ⋯ +

𝑎8

2
cos (8 ·

2𝜋𝑥𝑘

360
)+ 

 

+𝑏1 sin (
2𝜋𝑥𝑘

360
) + 𝑏2 sin (2

2𝜋𝑥𝑘

360
) + ⋯ + 𝑏7 sin (7 ∙

2𝜋𝑥𝑘

𝑇
) +

𝑏8

2
sin (8 ∙

2𝜋𝑥𝑘

𝑇
)  

k=1,36  

 

Now it will be possible to find those sought intermediate points and use them in calculating 

the shape parameters of Weibull distribution. But we need to assess the formulation and correctness 

of our created model for interpolation. To do this, it will be required to show the continuous plot s(x) 

passing through the interpolating points of mean or sdev.  

 In Figure 1 and Figure 2 the interpolation of mean and standard deviation values found for the 

year 1960 have been accomplished. The graph of trigonometric function passes through all the given 

16 points and thus it is considered best choice for the given data. 

 After ensuring that model for interpolation satisfies all necessary conditions it is possible to 

find those intermediate 36 points of mean and standard deviation with 10o interval for each year till 



1974. Then again all shape and scale parameters of Weibull distribution for the years before 1975 

have to be calculated. 

 

 

Figure 1.  Interpolation of mean values from 

1960th year using Fourier series 

Figure 2. Interpolation of sdev values from 

1960th year using Fourier series. 

2.4. Normal probability plot. 

Normal probability plot is most commonly used graphical technique to define the substantial 

deviations from normality, in other words, when it is necessary to identify whether a given random 

sample can be regarded as sample from Gaussian (normal) distribution this special plot technique is 

used. The observed trace of non-exceedance probability is plotted so called normal probability plot, 

in which the scales are changed so the target distribution can be represented by a straight line. The 

plot enables to classify the type of distribution according to its kurtosis, skewness and tail length. To 

plot the graph, the ordinate values of observations should be found. The cumulative distribution 

function can be found using the following formula when the number of observations is N: 

𝑝(𝑥 ≤ 𝑥𝑖) =
𝑖

𝑁+1
                                                           (11) 

 To estimate the non-exceedance probability of x first xred values should be found for the 

corresponding cdf values using inverse of error function: 

𝑥𝑟𝑒𝑑 = 𝑖𝑛𝑣𝑒𝑟𝑓(2 ∙ 𝑝(𝑥) − 1) ∙ √2 

Inverse error functions is represented as follows: 

erf −1 (
2𝑥

√𝜋
) = 𝑥 +

1

3
𝑥3 +

7

30
𝑥5 +

127

630
𝑥7 +

4369

28680
𝑥9                                    (12)  

 To obtain better precision it is possible to use the following coefficient formulas for n-th order: 
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𝑎𝑛 =
𝑐𝑛

2𝑛+1
 ,                                                                     (13) 

𝑐𝑛 = ∑
𝑐𝑛∙𝑐𝑛−1−𝑘

(𝑘+1)(2𝑘+1)

𝑛−1
𝑘=0  , 𝑐0 = 1                                                    (14) 

 After finding xred the above inverse error function, finally the non-exceedance probability can 

be calculated to scale the observed cdf: 

𝑦 =
𝑥𝑟𝑒𝑑+2.326

2∙2.326
                                                            (15) 

 After finding the non-exceedance probability the Weibull parameters, namely shape and scale 

variables, could be traced in normal probability paper. For that, the parameters of particular sectors 

should be sorted in ascending order and be plotted against the non-exceedance probability. Overall 66 

years, from 1952 till 2017, are observed, thus N will be 66.  

           As it can be seen from both graphs there is no distinct departures from straight lines. Thus, we 

can assume that given data set of Weibull parameters follow Gauss (normal) distribution. The program 

Origin demonstrates also the linear fitting of data using Least-square method. 

 

 

  

 

 

 

 

 

 

 

Figure 3. Normal probability plot of shape parameter and scale parameter values corresponding to 

sector 10. 

2.5. Frequencies of directions after 1975. 

         We first deal with the frequencies after this year since they are already divided into sectors 

which we need for all of our calculations. As it is noted, it is vital to keep unity of sum of 

frequencies of directions and those of calms, and thus total number of counts for all directions 

should count these two type of measurements.  
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Equation y = a + b*x

Plot ynorm

Weight No Weighting

Intercept -1,10108 ± 0,02401
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Residual Sum of Squares 0,03809
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Algorithm 10. Calculate the frequencies of directions for each year 

Step 1. Count each direction’s measurements in array of 36 size. 

𝑐𝑜𝑢𝑛𝑡𝑑𝑖𝑟 = 𝑐𝑜𝑢𝑛𝑡𝑑𝑖𝑟 + 1                𝑑𝑖𝑟 = 1,36 
 

Step 2. Count erroneous measurements and calms in another two variables. 

𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑟𝑜𝑟 = 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑟𝑜𝑟 + 1 

𝑐𝑜𝑢𝑛𝑡𝑐𝑎𝑙𝑚𝑠 = 𝑐𝑜𝑢𝑛𝑡𝑐𝑎𝑙𝑚𝑠 + 1  
 

Step 3. Calculate each frequency by dividing each count to total sum. 

𝑓𝑟𝑒𝑞𝑑𝑖𝑟 =
𝑐𝑜𝑢𝑛𝑡𝑑𝑖𝑟

∑ 𝑐𝑜𝑢𝑛𝑡𝑑𝑖𝑟 + 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑟𝑜𝑟 + 𝑐𝑜𝑢𝑛𝑡𝑐𝑎𝑙𝑚𝑠
36
𝑑𝑖𝑟=1

 ;      𝑑𝑖𝑟 = 1,36 

 

        We would like to generate the random frequencies of each direction when we want to calculate 

damage, since it is influenced by the orientation of building as well as direction of wind. To do that 

however we need to know which type of probability distribution annual wind direction frequencies  

 

 

 

 

 

 

 

 

 

Figure 4. Normal probability plot of frequency 

data set distribution corresponding to sector 10. 

Figure 5. Normal probability plot of frequency 

data set distribution corresponding to sector 20. 
 

follow. In order to identify this, it is required to sort one example of frequency values in ascending 

order and plot them in a normal paper and check, whether the trace obtained could be represented by 

a straight line. A normal probability plot allows one to verify whether a given data is distributed 

according to a normal distribution as described above. If the plot can be represented by a straight line, 

then one can assume that data set follows normal distribution. If it tends to be a curved than it is 

deducted that the trace should follow other distribution like Beta. 

         In the Figures 4-5, all 43 year frequencies of 10-th and 20-th sectors are plotted in normal 

probability paper. As it can be seen from the graphs that the trace of frequency data set cannot be 

represented by a straight line, meaning that the frequencies do not follow the normal distribution. 10 
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th sector shows higher deviations from straight line, while the latter sector. 20 th, demonstrates the 

tail being curved. 

            Thus one can come to conclusion that it is not best idea to model the frequencies with normal 

distributions. The another option for modelling is Beta distribution due to its versatility it can fit any 

set of data, including frequencies.  

            2.7. Frequencies of directions before 1975. 

            As indicated above the frequencies before 75 th year has a larger interval, thus intermediate 

points with interval 10o should be found to be able to work with all available data. Here again it is 

possible to apply trigonometric interpolation with Fourier series and find the intermediate missing 

points of interest.  

           In the graph below it can be seen that that trigonometric interpolation has been applied for the 

frequency sectors in 1952 year and the graph line is fitting all 16 points. It is possible now to generate 

frequencies for 36 directions. To accomplish this task, the area under curve is divided into 36 parts 

and each part is divided by whole area to obtain the frequency for each direction.  In this way we will 

be able to keep the unity of sum of the frequencies. The integration of area is done in very small steps 

and using the trapezoidal rule. Below short algorithm shows the way how it is done. 

Algorithm 11. Finding frequency sectors for 36 directions keeping the unity. 

Step 1. Apply Fourier series and get a_0, a(8), b(8) coefficients for the graph line. 

Step 2. Define the step-size of integration (the smaller the step-size is the more precise the 

integration will be).  

𝑑𝑡 =
360. 𝑑0

10000
 

Step 3. Start to calculate the integration of total area and integration area for frequency sectors 

using trapezoidal rule (midpoint rule). 

𝑠𝑢𝑚𝑡𝑜𝑡𝑎𝑙 = 𝑠𝑢𝑚𝑡𝑜𝑡𝑎𝑙 +
(𝑡 + 𝑑𝑡) + 𝑡

2
∙ 𝑑𝑡,       𝑡 = 0, 𝑑𝑡, 2𝑑𝑡, … 360° 

𝑠𝑢𝑚𝑠𝑒𝑐𝑡𝑜𝑟(𝑖) = 𝑠𝑢𝑚𝑠𝑒𝑐𝑡𝑜𝑟(𝑖) +
(𝑡 + 𝑑𝑡) + 𝑡

2
∙ 𝑑𝑡, 𝑡 = 0, … 10°; 10°, … 20°; … ; 350°, … 360°. 

𝑖 = 1,2, … ,36 
Step 4. Divide the array of sector arrays to total area to find frequency for each direction. 

𝑓𝑟𝑒𝑞(𝑖) =
𝑠𝑢𝑚𝑠𝑒𝑐𝑡𝑜𝑟(𝑖)

𝑠𝑢𝑚𝑡𝑜𝑡𝑎𝑙
,    𝑖 = 1,2, … ,36 

 

          This way we can keep the unity of the sum of frequencies of sectors plus frequencies of calms 

and erroneous measurements. Since in sum of after trigonometric interpolation the summation parts 

of cosine and sine will level itself to zero and only the a0/2 coefficient will remain, which is simply 

the average of 16 frequencies and equal to 1.  

         We have now enough data to develop the probabilistic model which is Beta distribution. 

Probabilistic model should be created for each direction using ensemble of 66 years. Basic idea is to 

find the fitting curve B(a,b,r,t) of the frequencies of particular direction, considering their cdf as 



observed Fcum, ranging from 1/67 till 66/67. This fitting curve is achieved through iterating the lower 

and upper edges of ensemble data. These lower and upper edges are simply the smallest and biggest 

frequencies of data when they sorted in ascending order. The idea is application of Least square 

method to find the minimum of the sum of squared differences for the whole iteration process. The a 

and b should be iterated till optimum values of a,b,r,t tuple achieved.  The Algorithm below explains 

broadly what steps should be taken in order to find such fitting curve of Beta distribution.  

Algorithm 12. Fitting process of frequency of data for each direction to Beta distribution using 

ensemble 66 years’ data.  

Step 1. Get mean and standard deviation of 66 frequencies.  

Step 2. Vary a and b in smaller steps. Step-sizes da, db could be taken as 1/1000. a_end=a-50da, 

b_end=b+50db.  This search radius can be changed based on how well fitting looks. 

do 100 a>=a_end 

a=a-da 

do 101 b<=b_end 

b=b+db  

end do  

end do 

Step 3. Get r and t for each a and b, using mean and standard deviation ignore the values when r 

and t are less 1. 

ℎ1 =
𝜇 − 𝑎

𝑏 − 𝜇
;      ℎ2 =

𝑏 − 𝑎

𝜎
 

𝑟 =
ℎ1 ∙ ℎ2

2 − (1 + ℎ1)2

(1 + ℎ1)3
 ;      𝑡 = 𝑟 ∙ ℎ1 

Step 4. Get the theoretical probability density and integrate the corresponding cumulative 

probability distribution in a sufficient fine grid between a and b for each frequency value. 

𝐹𝑡ℎ𝑒𝑜𝑟𝑖 = ∫ 𝑓(𝑟, 𝑡, 𝑥)𝑑𝑥,   𝑖 = 1,2, … ,66.
𝑓𝑟𝑒𝑞𝑖

0

 

Step 5. Get observed Fcum using linear interpolation scheme. 

𝐹𝑐𝑢𝑚𝑖 =
𝑖

𝑁 + 1
,   𝑖 = 1,2, … ,66, 𝑁 = 66 

Step 6. Get the difference between theoretical and observed cumulative distribution values and 

sum the squared differences. 

𝑠𝑢𝑚 = ∑(𝐹𝑡ℎ𝑒𝑜𝑟𝑖 − 𝐹𝑜𝑏𝑠𝑖)
2

66

𝑖=1

 

Step 7. Compare the summation for each iteration and find the minimum of them and for the 

minimum of summation 𝑎𝑜𝑝𝑡, 𝑏𝑜𝑝𝑡, 𝑡𝑜𝑝𝑡, 𝑟𝑜𝑝𝑡 values are found which builds best fitting line of 

Beta distribution.  



 

Figure 6. Fitting of observed frequency data set 

of first sector to Beta distribution 

Figure 7. Fitting of observed frequency data set 

of third sector to Beta distribution. 

 

 For the simplification and show the procedure it is better to give an example of 4 sector case, 

in which the space of wind direction is divided into four 90o sectors. Ensemble of 66 years’ frequencies 

are fitted to Beta curve using above algorithm.  

          The curves show nice fitting of data and we are now able to produce frequencies from Beta 

distribution.  However, the problem arises when frequencies of 3 sectors are summed. The summation 

yields sometimes values greater than unity and the fourth frequency becomes negative: 

𝑓𝑟𝑒𝑙1 + 𝑓𝑟𝑒𝑙2 + 𝑓𝑟𝑒𝑙3 > 1, 𝑓𝑟𝑒𝑞4 = 1 − 𝑓𝑟𝑒𝑞1 − 𝑓𝑟𝑒𝑞2 − 𝑓𝑟𝑒𝑞3 < 0                                  (16) 

Thus we need to come up with an alternative strategy to keep the unity of sum of frequencies. The 

basic idea is interpolating 16 frequency data for each year from 1952 till 1974 and using the integration 

only two 180o sector frequencies p180-1, p180-2 should be found. Using them the relative frequencies 

should be found which are complementary. 

𝑝𝑟𝑒𝑙180−1 =
𝑝180−1

𝑝180−1+𝑝180−2
,    𝑝𝑟𝑒𝑙180−2 =

𝑝180−2

𝑝180−1+𝑝180−2
,          𝑝𝑟𝑒𝑙180−1 + 𝑝𝑟𝑒𝑙180−2 = 1        (17) 

The next step is to iterate by varying a and b to find best Beta fit for 𝑝𝑟𝑒𝑙180−1, 𝑝𝑟𝑒𝑙180−2 as it is done 

for four sectors as an example above. And optimum a, b, r, t of Beta distributions will have following 

properties: 

𝑎1 = 1 − 𝑏2,     𝑏1 = 1 − 𝑎2,      𝑟1 = 𝑡2,       𝑡1 = 𝑟2                                                                       (18) 

𝜇𝑝180−1 = 1 − 𝜇𝑝180−2,       𝜎𝑝180−1 = 𝜎𝑝180−2                                                                              (19) 

In the next step, each 180o sectors will be divided into two sectors resulting in four 90o sectors.  

𝑝180−1 = 𝑝90−1 + 𝑝90−2,     𝑝180−2 = 𝑝90−3 + 𝑝90−4                                                                      (20) 
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Again relative frequencies should be found for each couple: 

𝑝𝑟𝑒𝑙90−1 =
𝑝90−1

𝑝90−1+𝑝90−2
,        𝑝𝑟𝑒𝑙90−2 =

𝑝90−2

𝑝90−1+𝑝90−2
                                                                (21) 

𝑝𝑟𝑒𝑙90−3 =
𝑝90−3

𝑝90−3+𝑝90−4
,        𝑝𝑟𝑒𝑙90−4 =

𝑝90−4

𝑝90−4+𝑝90−3
                                                                (22) 

         Again these relative frequencies are complementary to their pairs and each of them should be 

iterated by varying their extremes to fit Beta distribution. The idea is to further divide each 90o sectors 

into two 45o sector, each 45o sectors into two 22.5o sectors and finally each 22.5o sectors into 11.25o 

sectors. We end up with 32 sector frequencies with 11.25o interval. Further thing to be noted is the 

sum of relative frequencies will not add up to unity if there calms and error measurements. Errors and 

calms each form a separate group, the sum of all observed relative frequencies has to be normalized 

to yield unity in the end, i.e. normalizing factor in years is 

 𝑓𝑎𝑐𝑡𝑜𝑟𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑖𝑛𝑔 = 1 − 𝑓𝑟𝑒𝑞𝑐𝑎𝑙𝑚𝑠 − 𝑓𝑟𝑒𝑞𝑒𝑟𝑟𝑜𝑛𝑜𝑢𝑠                                                                    (23) 

        In most years, erroneous measurements are rare, thus, final model can be extended to the 

probability distribution to get calms for a year.  

        After reaching 32 sector frequencies with 11.25o interval, it is possible to start generating 

random frequencies for 32 sectors and later interpolate them to obtain 36 frequencies for a year. A 

strategy is from very beginning to generate one independent relative frequency and one 

complementary to it so the unity is kept. And this should be continued till 32 frequencies are found  

Algorithm 13. Strategy of generating 36 frequency values keeping unity of their sum. 

Step 1. Generate random 𝑝𝑟𝑒𝑙180−1, and calculate 𝑝𝑟𝑒𝑙180−2 

𝑝𝑟𝑒𝑙180−2 = 1 − 𝑝𝑟𝑒𝑙180−1 

Step 2. Generate 𝑝𝑟𝑒𝑙90−1, 𝑝𝑟𝑒𝑙90−3 and find the remaining relative frequencies as above. 

𝑝𝑟𝑒𝑙90−2 = 1 − 𝑝𝑟𝑒𝑙90−1,     𝑝𝑟𝑒𝑙90−4 = 1 − 𝑝𝑟𝑒𝑙90−3 
Step 3. Generated all 45o, 22.5o and 11.25o interval frequencies in similar manner. 

Step 4. Apply trigonometric interpolation with Fourier series to 32 generated frequencies for a 

year to obtain 36 frequency values.  

 

          In order to analyze generated random frequencies, it is a good strategy to plot time series of 

some sectors to know about the trends and any remarkable distinction between randomly generated 

and observed frequencies. 



 

Figure 8. Time series of 150o and 220o sectors’ frequencies 

           The plot shows that the direction 150o has a distinct jump in 1975. And it corresponds to a fairly 

sharp and isolated peak which is difficult to re-identify using re-distribution strategy based on Fourier-

series for 22.5o values.  

3. CONCLUSIONS 

       The main aim of the thesis was to consider the directionality effects of wind-induced fatigue 

damage for existing structures using the meteorological observations data in Dusseldorf from 1952 to 

2017 as well as data from wind tunnel experiment implemented on box-shaped building.  

        In modelling the frequencies of sectors we end up with the shortcomings because of the rather 

large stepsize (22.5o gap between subsequent sectors) of frequency sectors’ data written before 1975. 

Redistribution process with Fourier series and dividing the whole area under the curve into 2, 4, 8, 

etc. parts up to 32 and by keeping the unity of sum of sectors was strategy to model frequencies with 

Beta distribution. Fitting process of relative frequencies to Beta distributions have been done and in 

the end again the 32 values are interpolated to find the 36 sector values to match with data after 75th 

year. However, time series of generated frequencies from 52th till 74th years and the time series of the 

remaining 43 years showed significant inconsistencies in the trend. 150o and 220o wind flow directions 

values are plotted in this 66 year-time series and the values before 75th showed smaller radius of 

variation and rather smaller magnitude values compared to the values after this year. Thus it came to 

conclusion that using the data after 75th year to generate consistent model for frequencies would be 

better way. Or simply uniform frequency and average frequencies of sectors could be used. 
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