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INTIAL BOUNDARY VALUE PROBLEM FOR THE LINEARIZED KDV
EQUATION ON STAR GRAPH WITH ONE SEMI-INFINITE AND TWO
BOUNDED BONDS
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Annotation. In this article, we investigated an initial boundary value problem
for the linearized KDV equation on a simple metric graph consisting of two bounded
segments and one semi-infinite straight line connected at one point, called the vertex
of the graph. The uniqueness of the solution is proved by the method of energy
integrals.

Using the potential method, an integral formula is constructed for solving the
problem under consideration.
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AHHOTauMs.B [aHHOM CTaThe MBI MCCIIEIOBAIN HAYAIBHO - KPAEBYIO 3314y
uisi uHeapuzoBaHHoro ypaHenust KJIB Ha mpoctrom wmeTtpuueckom rpade,
COCTOSIIIEM U3 JBYX OrPAaHWYCHHBIX OTPE3KOB M OJHOW TOIYy-OCCKOHEYHOMH
OpsIMOM, COEIUMHEHHBIX B OJHOW TOYKE, Ha3bIBAEMOM BEPIIMHOW Tpada.
EAMHCTBEHHOCTD pellieHus JoOKa3aHa METOA0OM UHTErPajoB SHEPTHH.

C noMo1ipi0 MeTo/1a MOTEHIIUAJIOB MMOCTPOEHA UHTErpasibHas GopMmysia JJis
pelIeHHs paccMaTpUBaEeMO 3a1a4u.

Annotatsiya.Mazkur maqolada ikkita chekli kesma va bitta cheksiz grafning
uchi deb ataluvchi bitta nuqtada birlashtirishdan hosil bo'lgan sodda metrik grafda
chizigli KDV tenglamasi uchun boshlang'ich chegaraviy masala qaralgan. Masala
yechimi yagonaligi energiya integrallari usulida isbotlangan. Potensiallar usulidan
foydalanib masala yechimi integral formula olingan.

1. INTRODUCTION

The Korteweg-de Vries (KdV) equation has attracted attention of both
physical scientists and mathematicians, since it was found to admit soliton solutions
and be able to model the propagation of solitary wave on the water surface,
aphenomena first discovered by Scott Russellin1834.Theequationisalso used, e.g.,
to model the unidirectional propagation of small amplitude long waves in nonlinear
dispersive systems such as the ion-acoustic waves in a collisionless plasma, and the
magnetosonic waves in a magnetized plasma etc [11]. The linearized KdV provides
an asymptotic description of linear, undirectional, weakly dispersive long waves,
for example, shallow water waves. In [12] it is proven that via normal form
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transforms the solution of the KdV equation can be reduced to the solution of the
linear KdV equation. Belashov and Vladimirov [12] numerically investigate

evolution of the single disturbance u(0,x)=1u, exp(—x" /1) and show that in the

limit 7 — 0, u,l”> = const , the solution of the KdV equation is qualitatively similar

to the solution of linearized KdV equation. Boundary value problems on half lines
are considered in [2,5,7].

In this paper, we address the linearized KdV equation on a star graph I" with
two bounded and one semi-infinite bonds connected at one point, called the vertex.
The bonds are denoted by B, j=1,2,3, the coordinate x, on B, is defined from

—L, t0 0, and coordinate x, on B, is defined from O to L,, and coordinate x, on B,

1s defined from 0 to +oo. On each bond we consider the linear
equation:

3
{g_%Juf(xiﬂt):f/(xat): t>0’xj eBi’j :1’2’3' (1)

Formulation of the problems For the above star graph, we need to impose 5 BCs at
the vertex point, which should also connection between the bonds and 2 BCs at the
right side of B, and B,. In detail, we require: B, and B,. In detail, we require:

1,(0,0) =a,u,(0,¢) = au,(0,7), u, (0,) =bu, (0,1) =bu, (0,7), @)
1, (0.0) =0, 0.0) + 1, (0.0, ®)
a, a,
u(=L,) =4, u,(L,,1) = ,(0), u, (L,,)=95,(1),

(4)

for 0<t<T, T =const.
Furthermore, we assume that the functions fj(x,t), j=1,2,3, are smooth enough
and bounded. The initial conditions are given by:
u,(x,0)=0,xeB,, j=12,3. (5)

It should be noted that the above vertex conditions are not the only possible ones.
The main motivation for our choice is caused by the fact that they guarantee
uniqueness of the solution and, if the solutions decay (to zero) at infinity, the norm
(energy) conservation.

2. Existence and uniqueness of solutions

Lemma 1. Let LZ + Lz <1. Then the problem (1)-(5) has at most one solution.
2 3

b b
% [ul (e,t)dx = Quu, —u) [ +2] f(x,0u,(x,1)dx

for appropriate values of constants a and » on each bond. We
put ¢ (¢)=0. Then, the above equalities and vertex conditions (2)-(5) yield
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el )<e [;IIfH +¢z<r>]

”MrsjéWﬂ(gﬂV(ﬂﬂr+&ﬁﬂJda ©)
where

0 L, +o0
v)= J uv,dx, + Juzvzdxz + '[ uv,dx,,
- 0 0

||| = /(u,u), are scalar product and norm defined on graph ¢ is an arbitrary
positive number. Uniqueness of the solution follows from (6).

Theorem 1. Let, bi+bi_1 4.()C[0, T, ¢(1)eC'[0, T].

2 3
Then the problem (1)-(5) has a unique solution in C'([0, T, C*(I)).

Proof of theorem. To prove the theorem, we use the following functions are
called fundamental solutions of the equation u, —u__=0.

1 X—
Ul &m) = A 51, 1>,
(8 =1y =y
0 t<n
1 x—¢&
® , L>1,
V(¢CJ;§J7)= (t_n)% (Z‘—?])%
0 t<n

where f'(x) = for x>0, @(x)=0 for x <0 and

%Ai (‘%) o(x) =%Bi(—%)

Ai(x) and Bi(x) are the Airy functions. The functions f(x) and

¢(x) are integrable and | f(x)dx—— j f(x)dx—— j @(x)dx =0. Below, we
also use fractional integrals[8]:
Je f@): —m ( ~7)" f(z)dr, 0<a <l

and the inverse of this operator, 1.e., the Riemann-Liouville fractional derivatives
[8,9] defined by
d t

D3 f 0= ]

We look for solution in the form:

u,(x,1) = [U(x,10,m@,(m)dn + [V (x,,0,m)y, (7)dn +
0 0

(t—r)_af(r)dr, O<a<l.s
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+{U(x,t;-L,m)e,(m)dn + F(x,1)
l/lz(x,t) = '[U(X,t,o, U)@z(n)dn +J-V(x’t’L2’77)a2(77)d77 n
U t5L,,m) B, + F(x,1)

u, (x,1) = [U(x,;0,m)@,(m)dn + [V (x,1;0,m)a, (17)dn + F,(x,1)

where

1 t
F (0 =— [ [UGt:&n /(€ mdédn, k=123 )
Satisfying the/\conditions (2) we have:
[/ O)p,) + 9Oy (1) + f[ - Jal ()~ a4,/ (0)p,(7) -
“(t-n)’ (t=n)’
~a,p(0)ex, (1) f[ = T Jﬂz(ﬂ))dﬂ =a,F,(0,1) - F(0,7).

(t=n)°

From here, according to properties of fractional derivatives, one can get
f(o)(01(t) + ¢(O)l//1(t) - azf(o)(oz (t) - az(p(o)az(n) +

1

+—1D(30,[)j‘ : [f[ 4 lJal(n)azf[LzlJﬂz(ﬂ)]dﬂ
r@ ‘w-ny | La-ny =

LD @ F 0.0~ FO.0), ®)

(0,0)
3

Analogously, from the second part of this condition we get

f(O)@(t) + ¢(O)l//1(t) —Cl3f(0)¢3(1) —(13(0(0)063 (l) +

D[ — wf( : 1]%(77)—
r[J “e-n) \(-n)

! [a,F,(0,t) - F(0,1)], ©)

0,0)
3

f'(o)%(t) + (D'(O)% (t) - bzf'(o)(pz (t) —bzgo’(O)az (t) +
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r(3j ‘t-n} \@E-n)

_bz;zD(;o,t)Jt. : zf’(_ L2 1}ﬁ2(77)d77_

=l e g

1
=753 Dy, [, (0.0~ F.(0.0)], (10)
3)

3

f’(O)%(f) + ¢,(O)Wl (t) _b3f'(0)(03(t) —b3(0'(0)0!3(l‘) +

TN 30:),[ ! zf,[ 4 1}6(1(77)0177_
F(3j Ce-m? \(@=n)

= (12) (Ot)[ 3 3x(0 ZL) x(()’t)]’ (11)
I'f=

3

1

According to the vertex condition u, (0,¢)=—u, (0,t)+— um (0,1)
a2 3

we obtain

27 1 27 1 27
o)+ ———=0,(t) +——.(t) +
3 o (1) + 3 AGRS . 3 @,(1)

] B gy - L g =
e L@-ny “© | (t-py

-Lr on+Lr 0n-F_ 00,

a3 a2
(12)
From the boundary conditions (4) we get

F(O)a,(t) +—— Dy, [— lf[ 4 1}01(77)df7+
FU -ny -n)

1

t— %)t),[ 1 1(0{ _Lll}//l(ﬂ)dﬂ
r@ -y \(-n)
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1

=@% [40) - F(-L.0). (13)

3

0.0+ 9O (t) +—= Dy, [—— 1| —2— 8.0 =
i9

"(t-n) \(t-n)

=ﬁD(3OJ) [¢2(t)_F;(L29t)]’ (14)

3

FOp,(0) + @Oty (1) + — D3, [—— | —E2 |,y =
r(3)

2] -y La-ny
__ L
()
3

We obtained the system of integral equations (8)-(15) with respect to unknowns

D) = (9,(1), 0,0, 0,0y, (1), &, (8), 2, (1), &, (1), B, (1))

The matrix 4

D}, [6()-F.(-L,0)], (15)

f(0) -af@© 0 0 0 0 0 0
£(0) 0 —af0) o 0  —ap®) 0
[0 bSO 5O yoy 0 -bg0) -be'(0) 0
N A 2%a2 2%% 0 0 0 0 0
0 0 0 0 @0 0 0 0
0 0 0 0 0 0 0 f(0)
0 70) 0 0 0 o0 0 0
0 0) 0 0 0  ¢(0) 0 0
det 4= iﬁS !
9

Under conditions of the theorem this determinant is not singular.

According to the asymptotes of Airy functions the kernels of the integral
operators are integrable. Hence, it follows from the uniqueness theorem and
Fredholm alternatives that the system of equations has a unique solution. In this way

the solvability of the problem is proved.
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