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1. Introduction 
 Modeling of nonlinear optical processes is of practical and fundamental 

importance not only for optics but also relevant topics, too. One of the nonlinear 
processes which attracted much attention is optical harmonic generation. This plays 
important role for optical materials design, laser generation, signal transfer and many 
others. Therefore for practically important purposes it is required to develop novel 
functional materials and structures for optical harmonic generation, especially ways 
for its tuning. In simplest case, this should be second harmonic generation. In this 
work we propose one of such models for effective second harmonic generation in a 
branched optical structure, i.e., second harmonic generation in optical waveguide 
networks. For simplicity, we consider star branched waveguide. However, our 
method can be applied for arbitrary branching topologies.  

 
2. Second-harmonic generation on the star graph 
 The normalized evolution equation describing optical harmonic generation in 

star graph branched waveguide can be written as  
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+ 𝛽 𝑎
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( )

𝑒 = 0, 
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( )

𝑒 = 0, (1) 

 where 𝑎
( ) and 𝑎

( ) are the normalized amplitudes of the fundamental and the 
second harmonic waves, respectively, 𝑟 = −1 for spatial solitons, 𝛼 = −𝑘 /𝑘 , and 
𝛽  are nonlinearity coefficients. Here 𝑘  and 𝑘  are the linear wave numbers, 𝑗 =

1,2,3 is the number of bonds. In all cases we set 𝛼 = −0.5.  
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Fig. 1: Star graph 

  Fig.1 shows the star graph, choosing the origin of coordinates at the vertex, 
0 for bond 𝑒  we put 𝑥 ∈ (−∞, 0] and for 𝑒 ,  we fix 𝑥 , ∈ [0, +∞). 

Time and coordinate variables in Eq. (1) can be separated by the following 
substitution:  

 𝑎
( )

(𝑥, 𝑡) = 𝑈 (𝜂)exp[𝑖𝜙 (𝜂, 𝑡)],    𝑗 = 1,2,3  and  𝜈 = 1,2, (2) 

 where 𝑈 and 𝜙 are real functions, 𝜂 = 𝑥 − 𝑣𝑡 is the transverse coordinate, and 
𝜙 (𝜂, 𝑡) = 𝑘 𝑡 + 𝑓 (𝜂). Here 𝑣 is the soliton velocity and 𝑘  are the nonlinear 
wave-numbers. To avoid all energy exchange between the waves one needs 𝑘 =
2𝑘 + 𝛽. Then we obtain the following stationary system: 

 �̈� − (𝑘 − 𝑣𝑓̇ + �̇� )𝑈 + 𝑈 𝑈 cos(𝑓 − 2𝑓 ) = 0, (3) 

 �̈� 𝑈 + (�̇� − 𝑣)�̇� + 𝑈 𝑈 sin(𝑓 − 2𝑓 ) = 0, (4) 

 𝛼�̈� + [2𝑘 + 𝛽 − (𝑣 + 𝛿)�̇� − 𝛼𝑓̇ ]𝑈 − 𝑈 cos(𝑓 − 2𝑓 ) = 0, (5) 

 𝛼𝑓̈ 𝑈 + (𝛼𝑓̇ + 𝑣 + 𝛿)�̇� + 𝑈 sin(𝑓 − 2𝑓 ) = 0, (6) 

 where the overdots indicate the derivative with respect to 𝜂. 
 

 
a) 𝑣 = −0.5 
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b) 𝑣 = 2 

Fig. 2: Amplitude profiles of the fundamental (red line) and SH (blue line) waves on 
the star graph. In all cases 𝛼 = −0.5, 𝛿 = 0, 𝛽 = 0, 𝑘 = 3 and the nonlinearity 
coefficients 𝛽 = 1.66, 𝛽 = 2, 𝛽 = 3. 

  
To solve Eqs. (1) one needs to impose the boundary conditions at the graph 

vertex. They can be derived from the conservation laws for energy flow, transverse 
momentum and the Hamiltonian, which are given by (respectively)  
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 where star denotes complex conjugate and 𝐴( )
= 𝑎

( ) and 𝐴( )
= 𝑎

( )
exp(−𝑖𝛽𝑡). 

Time derivation of the conservative quantities  
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Time derivation of the total energy flow and the Hamiltonian lead to the 
following boundary conditions at the vertex when 𝛿 = 0 and 𝛽 = 0:  
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3. Cutoff rules 
 For the fundamental beam, setting 𝑈 ∼ exp(−Γ 𝜂) and linearizing Eqs. (3) 

and (4) give:  

 Γ = − (𝑘 + ), (15) 

 �̇� (𝜂 → ∞) = − . (16) 

 
Fig. 3: Nonlinear wave-number shift versus energy flow for the families of 

walking solitons with different soliton velocities. 

 
Fig. 4: Fraction of power carried by the second-harmonic beam (𝐼 /𝐼) as a function 
of the nonlinear wave-number shift 𝑘  at several velocity. In all cases 𝛿 = 0. 

  
In general, the tails of the second-harmonic beam are more complicated 

because the nonlinear terms in Eqs. (5) and (6) may decay at 𝜂 → ±∞ with the same 
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rate as the linear terms. When such is not the case, one has 𝑈 ∼ exp(−Γ 𝜂), with 
Γ < 2Γ . Then, Eqs. (5) and (6) yield  

 Γ = − (2𝑘 + 𝛽 +
( )

), (17) 

 �̇� (𝜂 → ∞) = − (𝑣 + 𝛿). (18) 

 For the condition Γ < 2Γ  to be fulfilled by Eq.(17) it is necessary that  

 [2𝑘 (𝑟 − 2𝛼) + 𝛽𝑟 +
( )

− ] > 0. (19) 

 In the case 𝛼 = −0.5 and 𝑟 = −1 that we always consider in the numerics here, 
inequality (19) leads to  

 𝛿(2𝑣 + 𝛿) > 𝛽. (20) 
 For given values of the various involved parameters, stationary walking solitons 
exist for nonlinear wave-number shifts above cutoff values:  

 𝑘 , = max{− , − (𝛽 +
( )

)}. (21) 

 
4. Second-harmonic generation on the H-graph 

 
Similar as the H-graph the normalized evolution equations:  

 𝑖
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 H-graph is presented in Fig.4. The coordinates are defines as 𝑥 , ∈ (−∞, 0], 𝑥 ∈
[0, 𝐿], 𝑥 , ∈ [0, +∞), where 𝐿 is the length of bond 𝑒 , i.e. the distance between 
two vertices. 

 
Fig. 5: H-graph 

  Eqs.(2)-(6) can be written for the H-graph, but here 𝑗 = 1,2,3,4,5. 
Boundary conditions at the vertices:  
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 where 𝛾( )
= 𝛽 . Fig.6 shows that the amplitudes of the fundamental and second 

harmonic waves on the H-graph. 
 

   
Fig. 6: Amplitude profiles of the fundamental (red line) and SH (blue line) waves on 
the H-graph. Where 𝛼 = −0.5, 𝑣 = 0.5, 𝛿 = 0, 𝛽 = 0, 𝑘 = 3, 𝐿 = 8 and the 
nonlinearity coefficients 𝛽 = 2, 𝛽 = 3, 𝛽 = 1.6641, 𝛽 = 2.5, 𝛽 = 2.2299 

  
5. Conclusion 

 Solving Eqs. (1) numerically we obtain profiles of the generated second 
harmonics. Fig. 2 presents profile of the amplitude of generated second harmonics 
for different values of the parameters. Thus in this work we obtained solutions of the 
nonlinear system of equations describing optical second harmonic generation in 
branched optical waveguides. The results obtained can be used for modeling and 
design branched optical materials allowing tunable second harmonic generation to 
be used for different practical purposes. 
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