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        Abstract. Integer factorization remains one of the central challenges in modern 

number theory and continues to play a decisive role in the security of contemporary 

cryptographic systems. Asymmetric cryptographic schemes—especially RSA—derive 

their strength from the practical difficulty of breaking down a large composite number 

into its prime factors. With continuous progress in both computing power and 

algorithmic design, understanding how well different factorization methods perform 

has become increasingly important for anticipating cryptographic resilience and 

identifying where vulnerabilities might emerge. This paper provides an in-depth 

comparison of the most prominent exponential and sub-exponential factorization 

algorithms. Among the methods examined are classical approaches such as Fermat’s 

technique, Pollard’s ρ, Pollard–Strassen, Shanks’ SQUFOF, Pollard’s p−1, and 

Lehman’s algorithm, as well as more advanced strategies including Dixon’s method, 

the Continued Fraction Method (CFRAC), the Quadratic Sieve, Lenstra’s Elliptic 

Curve Method, and the Number Field Sieve. Each algorithm is explored through its 

mathematical foundation, computational complexity, structural characteristics, and 

practical range of effectiveness. By bringing together theoretical perspectives and 
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established performance insights, the paper offers a coherent view of how factorization 

algorithms have evolved and why they matter for the security of modern cryptographic 

systems. 

1. Introduction 

Decomposing a composite number into its prime factors is a problem with a long 

intellectual history, yet it remains deeply relevant in today’s digital era. While 

multiplying two large primes is a trivial task for any computer, reversing the process - 

recovering those primes from their product - is inherently difficult when the numbers 

are sufficiently large. This inherent imbalance forms the backbone of public-key 

cryptography. In particular, the security of RSA hinges on the assumption that factoring 

a number of the form 𝑁=𝑝𝑞, where 𝑝 and 𝑞 primes typically between 1024 and 4096 

bits, is computationally infeasible with classical algorithms [1]. 

Over time, researchers have introduced a wide variety of factorization 

algorithms, each shaped by different mathematical ideas and optimized for different 

scenarios. Some of the earliest approaches, including Fermat’s method and Pollard’s ρ, 

are conceptually simple and rely on clever number-theoretic observations. However, 

their performance deteriorates rapidly as numbers grow larger. Sub-exponential 

algorithms, such as the Quadratic Sieve and the Number Field Sieve, brought a major 

shift by dramatically reducing the time required to factor large semiprimes. These 

algorithms form the basis for many of the most significant factorization achievements 

reported in recent decades. 

Studying these methods closely is important for several reasons. First, it helps 

assess how secure widely used cryptographic systems truly are. Second, it provides 

insight into how an algorithm behaves under different numerical structures, such as 

when the primes are close to each other or when one of them has a smooth component. 

Third, as computing technologies evolve - including the rise of specialized hardware 

and large-scale distributed computation - regularly reviewing algorithmic capabilities 



ensures that cryptographic recommendations remain aligned with real-world 

capabilities. 

The analysis in this paper builds on the detailed explanations and examples 

provided in the accompanying source material [2], reorganizing them into a clear 

comparative framework. The aim is to offer researchers, students, and practitioners a 

well-structured and accessible overview of both classical and modern factorization 

techniques, emphasizing their strengths, limitations, and relevance in contemporary 

cryptography. 

2. Methodology 

To produce a balanced and reliable comparative analysis, this study adopts a 

multi-stage methodological approach consisting of classification, theoretical review, 

empirical interpretation, and structured comparison. 

2.1 Algorithm Classification 

The algorithms were first divided into two major families: 

 Exponential-time algorithms, whose running times grow roughly as 2𝑂(𝑛) 

or with similar exponential characteristics. 

 Sub-exponential algorithms, typically described by the L-notation, which 

achieve considerably faster performance for large input sizes. 

This classification aligns with established conventions in computational number 

theory and reflects the distinctions highlighted in the source document [2]. 

2.2 Analytical Framework 

Each algorithm is examined along five primary dimensions: 

 Mathematical foundation - e.g., difference of squares, cycle detection, 

elliptic curves, or algebraic number fields. 

 Asymptotic time complexity - expressed in classical big-O notation or the 

L-notation for subexponential algorithms. 

 Effective operational range - approximate bit-lengths where the algorithm 

remains practical based on documented performance [2-13]. 



 Strengths and weaknesses - stemming from structural behavior or 

dependence on specific properties such as smoothness. 

 General-purpose vs. special-purpose use - determining whether the 

algorithm is broadly applicable or effective only when certain number-

theoretic conditions are met. 

2.3 Empirical Interpretation 

The source material includes computed examples and observed execution times 

for different algorithms when applied to integers of varying sizes [2]. These examples 

were not replicated experimentally but were incorporated as qualitative indicators of 

practical performance. The interpretation focuses on identifying trends - such as the 

rapid degradation of exponential methods or the consistent scalability of sub-

exponential algorithms. 

2.4 Comparative Synthesis 

The final stage involved constructing summary tables for both exponential and 

sub-exponential algorithms. These tables synthesize theoretical and practical insights 

into clear, academically formatted comparisons without altering the original ordering 

of referenced literature. 

This methodology ensures that the analysis maintains academic rigor while 

remaining faithful to the content and structure of the provided material. 

3. Exponential-Time Algorithms 

3.1 Fermat's Factorization Method 

Fermat's approach relies on representing 

𝑁 = 𝑥2 − 𝑦2 = (𝑥 − 𝑦)(𝑥 + 𝑦) 

It is efficient only when the prime factors 𝑝 and 𝑞 are close in magnitude. For 

unbalanced semiprimes its running time becomes exponential in the bit-length of 𝑁[3]. 

Effective for < 16-bit inputs. 

3.2 Pollard's 𝝆 Algorithm 



Pollard's 𝜌 uses pseudorandom iterates and Floyd's cycle-finding technique. Its 

expected runtime is approximately 

𝑂(√𝑝), 

where 𝑝 is the smallest prime factor. It performs well for medium-sized factors 

and is practical up to ∼ 30 bits [4]. 

3.3 Pollard-Strassen Algorithm 

This hybrid method combines Pollard's 𝜌 with Strassen's enhancements, 

improving factor discovery in specific conditions but remaining exponential in the 

worst case [5]. Applicable roughly below 24 bits. 

3.4 Shanks' SQUFOF (Square Forms Factorization) 

SQUFOF refines Fermat's idea using quadratic forms. It is fast on small devices 

and performs well for numbers below ∼ 26 bits [6].  

3.5 Pollard's 𝒑 − 𝟏 Algorithm 

This method exploits the smoothness of 𝑝 − 1. When a factor satisfies the 

smoothness condition, the algorithm is extremely efficient; otherwise it fails entirely. It 

is effective for some integers up to ∼ 66 bits [7]. 

3.6 Lehman's Algorithm 

Lehman's algorithm is deterministic and achieves a complexity close to 

𝑂(𝑁1/3), 

representing a historical improvement over naïve trial division. It is mainly of 

theoretical interest and practical only for small values (<16 bits) [8].  

4. Sub-Exponential Factorization Algorithms 

Sub-exponential algorithms are described using the L-notation: 

𝐿𝑛(𝛼, 𝑐) = exp⁡((𝑐 + 𝑜(1))(log⁡𝑛)𝛼(log⁡log⁡𝑛)1−𝛼) 

4.1 Dixon's Algorithm 



One of the earliest sub-exponential methods, Dixon's algorithm finds random 

squares modulo 𝑁 and uses them to derive congruences. Effective below ∼ 73 bits and 

of foundational importance [9]. 

4.2 CFRAC (Continued Fraction Factorization Method) 

CFRAC uses convergents in the continued fraction expansion of √𝑁 to find 

congruent squares. It was one of the fastest known methods prior to the Quadratic Sieve 

and is practical up to ∼ 80 bits [10]. 

4.3 Quadratic Sieve (QS) 

The Quadratic Sieve generalizes Fermat's method with sieving and linear algebra, 

achieving complexity 

𝐿𝑛 (
1

2
, 1). 

It is highly effective for numbers up to ∼ 100 digits ( ≈ 330 bits) and remains 

one of the most influential general-purpose algorithms [11]. 

4.4 Lenstra's Elliptic Curve Method (ECM) 

ECM uses arithmetic on elliptic curves to find relatively small prime factors. Its 

runtime approximates 

𝐿𝑝 (
1

2
, √2), 

making it the most efficient method for discovering small and medium-sized 

prime factors (<83 bits) [12]. 

4.5 Number Field Sieve (NFS) 

NFS is the fastest known classical factoring algorithm, with complexity 

𝐿𝑛 (
1

3
, (64/9)1/3) 

It is the dominant method for factoring numbers larger than ∼ 110 bits and the 

only practical approach for modern RSA key sizes [13]. 

Comparative Analysis 

5.1 Exponential Algorithms Summary 



Table 1. Summary of Exponential-Time Factorization Algorithms 

Algorithm Mathematical Basis Effective Range Complexity 

Fermat 
Difference of 

squares 
<16 bits Exponential [3] 

Pollard 𝜌 Cycle detection <30 bits 𝑂(√𝑝)[4] 

Pollard-Strassen Hybrid <24 bits Exponential [5] 

SQUFOF Quadratic forms <26 bits Exponential [6] 

Pollard p − 1 Smoothness <66 bits 
Smoothness-

dependent [7] 

Lehman Deterministic <16 bits 𝑂(𝑁1/3) [8] 

 

5.2 Sub-Exponential Algorithms Summary 

Table 2. Summary of Sub-Exponential-Time Factorization Algorithms 

Algorithm Basis Effective Range Complexity 

Dixon 
Random 

congruences 
<73 bits 𝐿(1/2, 𝑐) [9] 

CFRAC 
Continued 

fractions 
<80 bits 𝐿(1/2, 𝑐) [10] 

Quadratic Sieve Sieving <100 digits 𝐿(1/2,1) [11] 

ECM Elliptic curves <83-bit factors 𝐿(1/2, √2) [12] 

NFS Number fields >110 bits 
𝐿(1/3, (64/9)1/3) 

[13] 

 

5.3 Practical Observations 

Empirical results from the original dataset indicate that exponential algorithms 

degrade rapidly as the bit length increases, whereas sub-exponential methods continue 

to perform reliably. NFS overwhelmingly outperforms all other classical algorithms on 



large inputs, confirming its status as the practical tool for analyzing RSA-size integers 

[2]. 

6. Conclusion 

The analysis presented throughout this paper highlights how integer factorization 

has gradually evolved from simple, intuitive methods to highly sophisticated algorithms 

capable of challenging even large cryptographic structures. Exponential algorithms - 

such as Fermat’s method, Pollard’s ρ, SQUFOF, Pollard’s p−1, and others-demonstrate 

how early approaches often relied on elegant mathematical observations yet struggled 

as the numbers grew larger. Their limited scalability makes them more suitable for 

teaching, experimentation, or factoring integers with very specific structural properties. 

Sub-exponential algorithms mark a turning point. Dixon’s method and CFRAC 

introduced new ways of thinking about smooth numbers and congruences. The 

Quadratic Sieve refined these ideas into a practical, well - engineered method that 

remained dominant for many years. Lenstra’s Elliptic Curve Method added an entirely 

new dimension by showing that elliptic curves, originally studied for purely theoretical 

reasons, could offer remarkable advantages in finding small and medium-sized factors. 

Finally, the Number Field Sieve stands as the culmination of decades of progress - a 

complex and powerful algorithm that currently defines the limits of classical 

factorization. 

Across all these methods, a consistent theme emerges: the difficulty of factoring 

large integers is not a fixed barrier but a moving target. As algorithms improve and as 

computational resources grow, the effective security of cryptographic systems must be 

reassessed. Although modern RSA implementations remain secure when appropriate 

key sizes are used, history shows that relying on static assumptions can be dangerous. 

Each new algorithm reshapes the landscape, sometimes subtly, sometimes significantly.  

In a broader sense, this comparison reminds us that cryptographic security is 

intimately tied to mathematics, and mathematics itself is always evolving. 

Understanding the strengths and weaknesses of both exponential and sub - exponential 



factorization algorithms is therefore not merely an academic exercise - it is an essential 

part of anticipating future risks, evaluating current systems, and guiding the transition 

toward more resilient cryptographic frameworks. 

Ultimately, integer factorization remains both a practical challenge and a 

fascinating mathematical journey. As long as cryptography depends on the hardness of 

factoring, studying these algorithms-and the ideas behind them - will continue to be a 

vital part of ensuring secure communication in the digital world. 
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