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The structure and dynamics of one-dimensional binary Bose gases forming quantum 

droplets is studied by solving the corresponding amended Gross-Pitaevskii equation. Two 

physically different regimes are identified, corresponding to small droplets of an 

approximately Gaussian shape and large “puddles” with a prominent flat-top plateau. Small 

droplets collide quasi-elastically, featuring the soliton-like behavior. 
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I. Introduction 

Among the important advances in the study of cold bosonic gases and superfluids 

is the implementation of quantum drops in a series of experiments with anisotropic 

interactions between dipolar atoms [1, 2], as well as contact isotropic interactions. in 

two-component Bose gases. [3,4 ]. Therefore, the attractive and repulsive forces whose 

interaction leads to the formation of quantum droplets are anisotropic for dipoles and 

isotropic for mixtures of two-component gases. In one-dimensional geometry the 

(slightly) repulsive meanfield (MF) contribution to the energy per particle scales 

linearly with density n of the gas, getting balanced by the attractive beyond mean-field 

(BMF) as  -n1/2. As a result, the system’s energy features a minimum, corresponding 

to the formation of a liquid droplet [5, 6]. Notably, its density can be tuned in a wide 

range, making it possible to create extremely dilute liquids and thus realize, perhaps, 

the most dilute liquid ever observed in any physical setting. An additional interest in 

this new class of quantum liquids, as compared to liquid helium, is that the condensate 

fraction is very large, permitting one to make accurate quantitative predictions based 

on the mean-field theory amended by the BMF correction. Indeed, the description in 

terms of the effective GrossPitaevskii equation (GPE), used to model the dipolar 

condensates [7], agrees with ab initio quantum Monte Carlo calculations for dipolar 

droplets [8, 9], and for ones formed in the binary BEC dominated by the contact 
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interactions [10]. It was argued that the quantum droplets may find an application to 

the design of a precise matter-wave interferometer [11, 12]. 

While the present study concentrates on the properties in one-dimensional 

geometry, we find it instructive to make a comparison with three-dimensional 

counterpart in terms of the sign of the BMF corrections and the value of the gas 

parameter where MF theory can be applied. Indeed, one-dimensional systems might 

seem counterintuitive for certain properties. Suppose we consider a single-component 

gas with delta-interacting potential  V(r) = gδ(r),  its potential energy per particle is  

E/N = gng2(0)/2  where  g2(0)  is the value of the densitydensity correlation function  

g2(r) = (n(r)n(0))/(n)2  at contact position  r = 0. The potential energy per particle 

scales linearly with the density. The potential energy can be reduced to zero by making 

the particle fully impenetrable g2(0) = 0. On the other hand in one dimension the 

impenetrable condition induces kinetic energy per particle which scales quadratically 

with the density,  E/N ∝ ħ2n2/m.  It means that in one dimension the mean field 

regime, where one can neglect correlations and set  g2(0) = 1,  is reached for large 

density. Here the meanfield energy n becomes smaller than  n2  dependence of a 

strongly correlated (Tonks-Girardeau) gas which is obtained when  g2(0) = 0  (Pauli 

exclusion). This is exactly on the opposite from the “usual” three dimensional situation 

where the mean-field energy  ∝ n  becomes energetically preferable at small densities 

compared to the kinetic energy per particle due to Pauli principle  ∝ ħ2n2/3/m.  As a 

result, the regimes of the applicability of the meanfield theory are swapped and 

correspond to small (3D) and large (1D) densities. 

This possibility provides an important interdisciplinary connection to the field of 

nonlinear optics [15], as concerns the underlying model equations with higher-order 

nonlinearities [16] and, possibility, controlled generation of solitons in these systems. 

On the other hand, in the case when two-component features in the dynamics are 

essential, they may be affected by an additional linear interconversion between the 

components [17]. 

In three and two dimensions, quasi-1D solitons are unstable with respect to the 

transverse snake instability, although the stability can be enhanced by imposing rotation 

to the quantum droplets [18]. The advantage of the proper 1D geometry, imposed by 

the tight confinement in the transverse directions (cf. the experimental realization of 

the Tonks-Girardeau gas [19, 20]), is that such an instability is absent, thus permitting 

one to realize a very clean and highly controllable many-body testbed which may permit 

the measurement of quantum many-body effects with very high precision. 



 

Commonly known hallmarks of solitons are being (i) self-trapped and (ii) robust 

with respect to soliton-soliton collisions. While the former feature is definitely present 

in quantum droplets, the latter one should be yet verified. It was proposed to use 

Gaussian ans¨atze for gaining an analytical insight in physics of dipolar [7] and BEC 

[3] droplets. In particular, the dynamical version of the Gaussian-based variational 

approximation (VA) can be used to predict the frequency of intrinsic oscillations of the 

soliton-like objects in an excited state [21–22]. 

 

II. Model systems limit cases of small snd large drops 

We consider the binary BEC with mutually symmetric spinor components, 

assuming that the coupling constants describing the repulsion between the atoms in 

each one are equal, g↑↑ = g↓↓ ≡ g, and numbers of atoms in the components are equal 

too. In this case, the equilibrium densities of both components are identical, which 

makes the analysis essentially easier, and results clearer. 

The underlying time-dependent GPE for the onedimensional droplet with the 

symmetric components is [5] 

𝑖ħ𝜓𝑡 = −
ħ2

2𝑚
𝜓𝑥𝑥 + 𝛿𝑔|𝜓|2𝜓 −

√2𝑚
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where parameters δg and g are positive and are related to the coupling constants in the 

two spinor components as  δg = (g↑↓ + g↑↑g↓↓)
1/2

 > 0  and  g = (g↑↑g↓↓)
1/2.  The 

coupling constant g is relevant for inducing a hard “spin” mode while the difference δg 

between attractive intercomponent and repulsive intracomponent interactions is 

responsible for appearance of a soft “density” mode and condition 𝛿𝑔 ≪ 𝑔 induces a 

separation of scales. 

In experiments it is possible to tune 𝛿𝑔 both to positive or negative values. The 

proper sign is chosen in such a way that the imbalance in the mean-field terms is 

opposite to the beyond mean-field contribution and consequently depends on 

dimensionality of the problem. In one dimension, the beyond mean-field terms are 

directly obtained from the second-order perturbation theory which produces a negative 

correction to the energy [14]. Accordingly, a positive mean-field imbalance is needed, 

δg > 0, for producing am energy minimum in the equation of state. In 3D, the BMF 

term includes the renormalization correction [13] to the scattering amplitude within the 

second Born approximation, resulting in the positive LHY term and requiring  δg < 0 

[5]. 

  We define characteristic units of length x0, time t0 and energy E0: 
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which yield a characteristic factor for the normalization of the wave function, 
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We demonstrate below that 
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determines a critical number of particles separating two different physical regimes. 

Thus, rescaling 

t = t0t
', x = x0x

', ψ = ψ0ψ
', (7) 

casts Eq. (1) in an equation without free coefficients (where the primes are omitted): 

𝑖𝜓𝑡 +
1

2
𝜓𝑥𝑥 − |𝜓|2𝜓 + |𝜓|𝜓 = 0 , (8) 

A peculiarity of the 1D geometry is that the groundstate solution of the GPE 

for the droplet, Eq. (8), can be found in an explicit form [9]: 
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with the relation between normalization N and chemical potential µ given by 
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The equilibrium density corresponding to the spatially uniform state (N → ∞), and 

the respective chemical potential, in units defined by Eqs. (2) and (4), are 
𝑛0

𝜓0
2 =

4

9
 , (11) 
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9
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In a large finite-size droplet (“puddle”),  µ  approaches the constant value (12) 

corresponding to the chemical potential of an infinitely extended uniform liquid at zero 

pressure. The chemical potential (10) is expanded as 

𝜇 = −
2

9
+

8

9
exp (−2 −

3

2
𝑁) , (13) 

and features an exponentially weak dependence on N. On the other hand, for small 

droplets with small N the dependence has a power-law form: 

 𝜇 = −
1

2
1
33

2
3

𝑁
2

3 = −0.382𝑁
2

3 , (14) 



 

In this case, the dependence on N is much stronger, as long as |µ| is small. 

The total energy E can be obtained by integrating the chemical potential, 

𝐸(𝑁) = ∫ 𝜇(𝑁′)𝑑𝑁′𝑁

0
.  For small N, Eq. (14) results in a power-law dependence, 
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while Eq. (13) produces an asymptotically linear dependence on large N: 

𝐸 = −
6
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16exp(−2)
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2
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A typical size of the droplet can be easily estimated in both limits. The large 

droplet includes a bulk (flat-top) region with the nearly uniform density given by Eq. 

(11), with size  L = N/n0.  The respective mean-square size also increases linearly with 

the number of particles, 

  √〈𝑥2〉 =
𝐿

2√3
=

𝑁

2√3𝑛0
= 0.65 . (17) 

III. Conclusion 

The main results reported in this paper are summarized as follows. We have 

studied static and dynamical properties of 1D two-component Bose gases forming 

quantum droplets, in the framework of the mean-field theory (GPEs) amended by the 

BMF (beyond-meanfield) corrections. Lines correspond to different values of the 

Weber number, defined as per 𝑁 ≪ 1 1 have an approximately Gaussian shape, being 

well described by the corresponding VA (variational approximation). Collisions 

between small droplets do not essentially alter their shape, hence droplets may be 

considered as solitons in a nearly integrable setting. 

On the other hand, large “puddle” droplets with 𝑁 ≫ 1  1 feature a top-flat 

density profile, with an approximately constant density corresponding to its equilibrium 

value in the uniform liquid. Although the VA fails to describe the exponential decay of 

the density profile at large distances, it is quite precise for small droplets and even 

produces meaningful results for a number of quantities of the “puddle” droplets. We 

have observed splitting and merger in collision of such extended droplets, depending 

on the collision velocity. We have produced the stability diagram for a single droplet 

with respect to imprinting a spatially periodic density modulation onto it. It 

demonstrates a fragmentation threshold in large (broad) droplets, with the critical 

Weber number ∼ 1. 

As an extension of the present work, it may be interesting to verify the validity 

of the mean-field theory, amended by the BMF terms, for predicting energies, density 

profiles and frequencies of oscillations, by means of the quantum Monte Carlo 

technique. In particular, it will be relevant to check if the entrainment between two 



 

superlfuid components, known as Andreev-Bashkin effect [39, 40], can be observed in 

intrinsic oscillations of the droplets. 
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